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Chapter 4

Renormalization group in spin glasses

The renormalization group treatment of spin glasses has long been a theo-

retical challenge. This chapter reviews the early standard replica symmetric

description as well as the current perturbative and non-perturbative under-

standing of these systems.

4.1 Mean-Field and ϵ-Expansion for Spin Glasses

Tom Lubensky, Department of Physics and Astronomy, University of

Pennsylvania, Philadelphia PA, USA

This section reviews my first article with Brooks Harris [1] presenting

a Landau-Wilson (LW) free energy [2–6] and our follow-up work [7] about

a model exhibiting transitions from the paramagnetic (P) to the ferromag-

netic state (M) and from M to a spin glass (SG) in addition to a P to SG

transition. This last transition was found to have an upper critical dimen-

sion, dc = 6, rather than the dc = 4 of familiar thermodynamic transitions.

Critical exponents to first order in ϵ = d − dc could then be obtained.

The usual ϵ-expansion protocol that had been applied with great success

to thermodynamic [4, 8, 9] and quantum [10, 11] phase transitions, dilute

and semi-dilute polymeric solutions [12], percolation [13, 14] and branched

polymers [15,16], however, appeared not to work for SG, at least not with-

out further tweaks. One might say that this breakdown was the canary

in a mine shaft that provided early warning that SG models were going

to require new ideas. They soon arrived in the form of replica-symmetry

breaking [17] after de Almeida and Thouless demonstrated [18,19] that the

Sherrington-Kirkpatrick (SK) SG state is unstable.
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Fig. 4.1 MF phase diagram showing the P, SG, M, and MSG⊥ phases and the multi-

critical point C. For m = 1, no distinct MSG⊥ phase exist; it becomes part of M.

4.1.1 Constructing a Landau-Wilson free energy

Consider first the MF phases and phase transitions associated with the

model Landau-Wilson free-energy density F describing a random micro-

scopic Om model with quenched random exchange interactions with aver-

age value, [J ]av, and second cumulant ([J2]av − [J ]2av). F is a functional

of the replicated [20] local magnetization M⃗ with components Mα
i and the

Edwards-Anderson (EA) [20, 21] spin-glass (SG) order parameter
←→
Q with

components Qαβ
ij with replica indices α and β running from 1 to n and

Om indices i and j running from 1 to m. The n = 0 procedure [22, 23] is

used to produce a homogeneous energy for the random system. As usual,

the diagonal elements with respect to αβ of Qαβ
ij are zero, and the trace

with respect to the ij indices of the off-diagonal α–β parts are equal to

[⟨S⃗(x)⟩ · ⟨S⃗(x)⟩]av and are thus greater than or equal to zero. The SK

model [24, 25] is a long-range version of this local model, which has been

used, for example, in Refs. [26–28].

F naturally decomposes into three parts:

F = FM + FQ + FMQ , (4.1)



July 11, 2022 14:0 ws-book9x6 Book Title output page 3

Renormalization group in spin glasses 3

where [7]

FQ =

[
1

4
rQTr

←→
Q 2 +

1

4
Tr(∇

←→
Q )2 − wQTr

←→
Q 3 + uQTr

←→
Q 4 − vQ(Tr

←→
Q 2)2

]
(4.2a)

FM =

[
1

2
rMM⃗ · M⃗ +

1

2
∇jM⃗ · ∇jM⃗

+uM
∑
α

Mα
i M

α
i M

α
j M

α
j − vM (M⃗ · M⃗)2

]
(4.2b)

FMQ = −wMQQ
αβ
ij M

α
i M

β
j (4.2c)

and where rQ = aQ(T−TQ) with TQ ∼ [J2]av−[J ]2av and rM = aM (T−TM )

with TM ∼ [J ]av. (The Einstein summation convention is here used.) All

of the energy coefficients wQ, wM , uQ, · · · except for rQ and rM are taken

to be positive.

4.1.2 Mean-field theory

The MF analysis of this Landau-Wilson description captures qualitative

SG features of the Edwards-Anderson (EA) [20,21] and SK [24,25] models.

It produces, in particular, an essentially identical phase diagram to that of

the latter.

Under the assumption that replica symmetry is not broken, both Mα
i

and Qαβ
ij are independent of the indices. Om rotational symmetry can,

however, be broken leading to M⃗ = Me, where e is the m-component

unit vector parallel to M⃗ . The breaking of rotational symmetry by M⃗

requires the isotropy of the Edwards-Anderson SG order parameter Qαβ
ij

to be broken with a component, Q||, parallel to M⃗ and a component, Q⊥,

perpendicular to M⃗ :

Qαβ
ij = [Q||eiej +Q⊥(δij − eiej)](1− δαβ). (4.3)

The (1− δαβ) factor forces all diagonal α–β components in Qαβ
ij to be zero.

When M is zero, Q|| = Q⊥ and Qij = Qδij(1− δαβ). The MF components

of F are [7]

FM = n

(
1

2
rMM

2 + uMM
4

)
, (4.4a)

FQ = n(n− 1){1
4
rQ[(m− 1)Q2

⊥ +Q2
||]− wQ(n− 2)[(m− 1)Q3

⊥ +Q3
||] +

ũQ[(m− 1)Q4
⊥ +Q4

||]} , (4.4b)

FMQ = −n(n− 1)wMQM
2Q|| , (4.4c)
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where ũQ = (n2 − 3n+ 3)uQ approaches 3uQ as n→ 0. Note that the vM
and vQ terms have been omitted because, being proportional to n2, their

contribution to F/n vanishes in the n → 0 limit. The equations of state

for M , Q||, and Q⊥ are

∂F
n∂M

= (rM + 4uMM
2 − 2(n− 1)wMQQ||)M = 0 , (4.5a)

∂F
n∂Q||

= (n− 1)

(
1

2
rQ − 3(n− 2)wQQ|| + 4ũQQ

2
||

)
Q|| (4.5b)

−(n− 1)wMQM
2 = 0 , (4.5c)

∂F
n∂Q⊥

= (n− 1)(m− 1)

(
1

2
rQQ⊥ − 3(n− 2)wQQ

2
⊥

)
Q⊥ = 0 .(4.5d)

Their solution determines the thermodynamic properties of M , Q||, and

Q⊥ and the full phase diagram. Note that the solution to Eq. (4.5d) for

Q⊥ does not depend on M . An important feature of these equations is

that they permit solutions with M and Q equal to zero, with M = 0 and

Q|| > 0, and with Q|| and M
2 greater than zero, but there is no phase with

Q|| = 0 and M ̸= 0. We will begin with a study of the SG phase in some

detail and then discuss the full phase diagram.

4.1.3 The spin-glass sector

In the SG phase, M = 0, Q|| = Q⊥ = Q, and

Qαβ
ij = Qδij(1− δαβ). (4.6)

The δij factor here implies that the pure SG state is isotropic. The LW

energy for this SG state is then

F
mn(n− 1)

=
1

4
rQQ

2 − wQ(n− 2)Q3 + 4ũQQ
4. (4.7)

Several properties of this expression require further comment:

(1) Note themn(n−1) factor in the denominator of the right-hand side. We

are interested in the limit n→ 0, and the normal procedure is to put the

factor (n−1), which is then negative, on the right side of the equation.

The resulting change in the effective free-energy equilibrium extremum

from a minimum to a maximum is unsettling. Taken at face value,

the factor n(n − 1) is the number of degrees of freedom in the replica

portion of the
←→
Q matrix so long as n > 1. An interpretation [22, 28]

that avoids the extremum dilemma is to view this factor as the number
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of degrees of freedom even in the analytic continuation n → 0. In

this interpretation, the right-hand side can be viewed as a free-energy

density per degree of freedom, which has the usual property of being

zero when the order parameter Q is zero and negative when rQ becomes

negative and a phase transition occurs. Unfortunately, as we shall

see, the number-of-degrees-of-freedom interpretation presents problems

when ferromagnetic as well as SG order is considered.

(2) As emphasized after Eq. (4.1), Q is constrained to be positive. The

free energy in the negative half plane can therefore be ignored.

(3) There is a third-order term in Q. Normally this implies a MF first-order

transition [9], in which the sign of Q in the ordered phase is opposite to

that of the coefficient of Q3 in the free-energy function. When n > 2,

the coefficient is negative implying a first-order transition to a state of

positive Q. When n < 2, the coefficient is positive implying a first-

order transition to negative Q, which is not permitted. Rather, there is

a second-order transition at rQ = 0 to a state with the required positive

Q. An identical behavior is noted in the treatment of percolation using

the s → 1 limit of the s-state Potts model [13, 14]. There, the order

parameter is the (necessarily positive) probability that the diluted lat-

tice has a connected cluster that traverses the sample in all directions.

The third-order term in the Potts energy changes sign at s = 2, and at

s = 1 the percolation transition is second-order with an upper critical

dimension of dc = 6.

Minimization of Eq. (4.7) leads to the equation of state for Q in the SG

state as rQ → 0:(
1

2
rQ − 3(n− 2)wQQ+ 32ũQQ

2

)
Q = 0 , (4.8)

with solution

Q =
1

32ṽ

[
3(2− n)wQ −

√
[3(2− n)wQ]2 − 32rQũQ

]
≈ rQ

6(2− n)w
n→0−−−→ − rQ

12wQ
, (4.9)

The contribution of the fourth-order ũQ term to Q vanishes as rQ → 0,

regardless of its sign, and near the phase transition, Q ∼ (−rQ)β , where
β = 1 rather the usual β = 1/2. The alternative solution for Q with a

+ sign before the radical corresponds to the negative value of Q (when

n = 0) and can be ignored. Note that the positive solution for Q emerges

when rQ < 0 only because the n − 2 term is negative when n = 0. If it
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remained positive, a first-order rather than a second-order transition would

be predicted.

4.1.4 The full phase diagram

The solutions to Eq. (4.5) produce the phase diagram with the P, M, SG

and MSG⊥ phases (Fig. 4.1). The point C = (rQ = 0, rM = 0) is tricritical

for m = 1 and tetracritical for m > 1. All of the other phase transitions

are second order, so the phase boundaries are set by the vanishing of order

parameters or inverse susceptibilities. The phases and their boundaries (all

with n = 0) are then as follows.

• The paramagnetic (P) phase has the trivial solutions M = 0 and Q|| =

Q⊥ = 0. The inverse M and SG susceptibilities are

χ−1
M = rM ; χ−1

Q = χ−1
Q||

= χ−1
Q⊥

= rQ . (4.10)

Their zeros determine the limits of stability of the P phase and thus the

PM and P-SG phases boundaries limiting P to rQ > 0 and rM > 0.

• The spin glass (SG) phase has M = 0, rQ < 0, and

Q = Q|| = Q⊥ = −rQ/12wQ (4.11)

with susceptibilities

χ−1
Q = χ−1

Q||
= χ−1

Q⊥
= −1

2
rQ , (4.12a)

χ−1
M = rM − (wMQ/6wQ)rQ . (4.12b)

These equations define the boundaries, as shown in Fig. 4.1, of the SG

phase to be the P-SG boundary on the line rQ < 0 for rM > 0 and the M-

SG boundary on the line rM = (wMQ/6wQ)rQ for rM < 0 beyond which

M grows from zero. Our model does not have any Q⊥-M
2 coupling, and

Q⊥ follows Eq. (4.11) throughout the entire region rQ < 0 and is insen-

sitive to the MSG boundary. However, there is a Q||-M
2 coupling, and

Q|| follows Eq. (4.12a) until the M-SG boundary whereupon it changes

behavior.

• The magnetic (M and MQ⊥) phases both exhibit both M and Q|| order.

The MQ⊥ phase additionally has Q⊥. For m = 1, however, there is no

Q⊥. The M phase is then determined by the two separate equations
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showing interactions between M and Q||:

M2 = (1/wMQ)

(
1

2
rQQ|| + 6wQQ

2
||

)
(4.13a)

Q|| = (wMQ/24ũwQ)
{
−A+ [A2 − (24ũMwQ/wMQ)rM ]1/2

}
,(4.13b)

where A = wQ + (v/wMQ)rQ. Clearly, Q|| and thus M vanish when

rM = 0. The P-M boundary is therefore along rM = 0. When rM =

(wMQ/6wQ)rQ,
1
2rQ+6wQQ|| = 0, thus verifying that M = 0 on the M-

SG line. Both Q|| andM
2 must be positive in the M and MQ⊥ phases. It

is straightforward to see thatM is nonzero for rM < 0 near the boundary

with the P-M phase boundary, and zero for rM > 0. It is also true, albeit

more complicated to show, that M2 grows continuously from zero for

displacements with positive changes, ∆rQ, to rQ perpendicular to the M-

SG boundary defined by rM = wMQ/(6wQ). For m > 1, Q⊥ is nonzero

throughout the rQ < 0 subspace because there is no coupling between it

and either M or Q||.

The M and MQ⊥ phases, which exhibit both
←→
Q and M⃗ order, present

greater difficulties in interpreting the n(n − 1) factor that, as discussed

in Sec. 4.1.3, either represents the number of degrees of freedom in
←→
Q

or signals an energy that is maximized rather than minimized in the SG

phase. In the M-SG case, the M⃗ component does not have the n − 1

problem but the
←→
Q part does, making it difficult to interpret n(n − 1)

as the number of degrees of freedom. This problem can be discerned in

the expressions for fluctuation corrections to the MF response function

arising from the FMQ. FM contains a term 1
2rMM⃗ · M⃗ . To one-loop

order in perturbation theory, rM experiences a correction proportional

to −(n− 1)w2
MQ at point C arising from a one-loop diagram.

4.1.5 Critical exponents and the ϵ-expansion

The MF order-parameter exponent β and correlation-length exponent ν

determine the upper critical dimension d = dc, via the relation β =

(1/2)(dc − 2)ν. In MF, Eq. (4.9) sets β = 1, and Eq. (4.2) implies ν = 1/2

Table 4.1 Exponents for the SG fixed point

Exponent λQ − 2 νQ − (1/2) λM − 2 ϕM − 1 ηQ ηM ψQ ψM

Value − 5mϵ
3(2m−1)

5ϵ
12(2m−1)

− mϵ
3(2m−1)

5mϵ
6(2m−1)

− mϵ
(2m−1)

0 −ϵ 7m−3
12m−6

ϵ
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so that dc = 6. The third-order term in F then becomes relevant in the

ϵ-expansion renormalization scheme (see Table 4.1).

The momentum-shell renormalization-group-recursion relations for an

ϵ-expansion about d = 6 are [7]

drM
dl

= (2− ηM )rM − 4m(n− 1)
w̃2

MQ

(1 + rM )(1 + rQ)
, (4.14a)

drQ
dl

= (2− ηQ)rQ − 36m(n− 2)
w̃2

Q

(1 + rQ)2
−

4w̃2
MQ

(1 + rM )2
(4.14b)

dw̃Q

dl
=

1

2
(ϵ− 3ηQ)w̃Q + 36[(n− 3)m+ 1]w̃3

Q + (4/3)w̃3
MQ , (4.14c)

dw̃MQ

dl
=

1

2
(ϵ− ηQ − 2ηM )w̃MQ + 4w̃3

MQ + 12m(n− 2)w̃Qw̃
2
MQ ,(4.14d)

where w̃S =
√
K6wS for S = Q,M,MQ (Kd = Ωd/(2π)

d with Ωd the solid

angle subtended by a sphere in d dimensions).

ηQ = [12(n− 2)mw̃2
Q + (4/3)w̃2

MQ] ηM = (4/3)(n− 1)mw̃2
MQ . (4.15)

The outputs of Eqs. (4.14) and (4.15) are their fixed points and the standard

zoo of critical exponents. A first observation is that there are three fixed

points, depicted in Fig. 4.2, in the space of wQ > 0 and wMQ > 0: the

Gaussian (G) fixed point at wQ = wMQ = 0, the SG fixed point at wQ =

w∗
Q > 0, wMQ = 0, and the M-SG-fixed point at wQ = w∗∗

Q > 0, w∗∗
QM > 0.

The exponents λQ = ν−1
Q and ϕM = ϕMλQ, where νQ is the correlation

length exponent for Q and ϕM , the crossover exponent for M , are those

that govern the growth of rQ and rM near the P-SG transition. ηQ and

ηM control the behavior of correlations of Q and M , respectively, on the

P-SG transition line. Finally, ψQ and ψM are the stability exponents that

control the behavior of wQ and wMQ near their fixed point.

Tables 4.1 and 4.2 summarize the exponents for the SG transition and

the M-SG multicritical point. At the G fixed point, both ψQ = ψM = ϵ/2,

and λQ = λM = 2. The SG fixed point has ψQ < 0, and is stable with

respect to changes in wQ, indicating that it describes the transition to the

Table 4.2 Exponents for the multicritical point C

Exponent λ+ − 2 λ− − 2 ηQ ηM ψQ ψM

m = 1 −8ϵ/3 −5ϵ/3 −ϵ/3 −ϵ/3 −ϵ −5ϵ/3

m = 2 (−1.150 + 0.3247i)ϵ (−1.150− 0.3247i)ϵ −0.2149ϵ −0.2451ϵ −ϵ −1.079ϵ
m = 3 −(0.9407 + 0.2539i)ϵ −(0.9407− 0.2539i)ϵ 0.1960ϵ −0.2253ϵ −ϵ −0.8686
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Fig. 4.2 Schematic RG flow for Eqs. (4.14) and (4.15) showing the G, SG and M-SG

FP. Note that the SG FP is unstable to flow toward the M-SG one.

SG phase as long as M⃗ or wMQ is zero. Because both λM and ψM are

positive, both rM and wQM are relevant variables that run away from any

initial values other than zero (see Ref. [28]). The M-SG-fixed point is the

most stable one with both ψQ and ψM negative. The equations for rQ and

rM are coupled, and, as a result, their exponents λ+ and λ− are associated

with linear combinations of them. Curiously, λ+ and λ− are complex then

conjugates of each other. There are other peculiarities to the RG flows

even for the Ising (m = 1) SG case, which unlike for m > 1 does not have

complex exponents at the M-SG fixed point.

It is therefore clear that the early and naive treatment presented in

this section raises more questions than it answers. The rest of this chapter

reviews the significant progress on these matters made since the 1970s.

4.2 Field theory for the Almeida-Thouless transition

Tamás Temesvári, ELTE Institute of Physics, Eötvös Loránd University,

Budapest, Hungary

Imre Kondor, Complexity Science Hub, Vienna, Austria, and London

Mathematical Laboratory, London, UK

MF theory is exact for the Ising spin glass on the fully connected lattice,

i.e. the SK model, and its simplest solution has a transition from the para-

magnet to the replica symmetric (RS) SG state in zero external field [29].

This RS phase, however, was soon proven to be unstable for zero as well as

for any nonzero magnetic field whenever the temperature is low enough [30].
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This instability is now understood to indicate the onset of replica symmetry

breaking (RSB) in both cases. Yet the nature of the instability differs in

one from the other:

• H = 0 : The high-temperature paramagnetic phase has a unique degen-

erate mass m [with multiplicity n(n− 1)/2 in the replicated theory, with

n being the replica number]. The MF transition at the SG critical point

Tmf
c has the character of a paramagnet to RSB SG transition, instability

of the paramagnet is signaled by m→ 0.

• H > 0 : The high-T phase has three different masses: replicon mR,

anomalous mA, and longitudinal mL. (For n = 0, the latter two are de-

generate.) Upon lowering T , mR vanishes at the Almeida-Thouless (AT)

instability, whereas the other two modes remain noncritical. This kind

of transition is now considered to be the true SG transition, physically

resulting in the SG susceptibility to diverge, whereas the zero-field case

is multicritical.

An AT transition can take place even when H = 0, but only for n ≳ 0

[31]. By extending the finite n calculation to H > 0, one can contrast the

phase diagram with that for n = 0 (Fig. 4.3). We note the following:

(i) The finite n phase boundary has a maximum, and hence the RS phase

reenters at low T .

(ii) The high-T endpoint of the finite n AT line is separated from Tmf
c by a

stable RS SG phase.

(iii) The T → 0 and n → 0 limit is strongly singular: the H axis for n = 0

is simultaneously the innermost part of the RSB phase, and the n → 0

limit of the low-T wing of the AT line.

4.2.1 RS field theory for the AT transition

Going beyond MF theory in d dimensions is commonly done by building

an effective field theory which is suited to the calculation of perturbative

corrections, and may be considered as an initial condition for iterating the

renormalization group flows. For this purpose, it is usual to apply the

Gaussian integral representation of the replicated and averaged partition

function [32–34]:

Zn ∼
∫
[dϕ] e−L(ϕ) , L(ϕ) = L(G)(ϕ) + L(I)(ϕ)
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Tmf
c

n = 0+

n & 0

Tm

T

H

Hm

Fig. 4.3 MF phase diagram of the Ising spin glass for n = 0+ and n ≳ 0. The maximum

asymptotically scales as Tm ∼ n [ln(n−2)]1/2 andHm ∼ [ln(n−2)]1/2. The low-T AT line

terminates at Tmin ∼ n [ln(n−2)]−1/2 (not marked in the figure) for H = 0, signalling
the RS reentrance.

with

L(G) =
1

2

∑
p

[(1
2
(paρ)2+m1

)∑
αβ

ϕαβp ϕαβ−p+m2

∑
αβγ

ϕαγp ϕβγ−p+m3

∑
αβγδ

ϕαβp ϕγδ−p

]
,

(4.16)

and

L(I) = − 1

3!
√
N

∑′

p1p2p3

8∑
i=1

wi I
(3)
i (ϕ)− 1

4!N

∑′

p1p2p3p4

23∑
i=1

ui I
(4)
i (ϕ)− . . .

(4.17)

where the fluctuating fields obey ϕαβp = ϕβαp with ϕααp = 0, the number

of the lattice sites N → ∞ in the thermodynamic limit, while ρa is the

interaction range. One can define the effective coordination number as

z ≡ ρd. (Momentum conservation is understood in the primed sums.) The

cubic and quartic RS invariants1 in the interaction Lagrangian L(I) have

been exhibited in Refs. [34, 35], some examples are displayed below:

I
(3)
1 (ϕ) =

∑
αβγ

ϕαβp1
ϕβγp2

ϕγαp3
, I

(3)
2 (ϕ) =

∑
αβ

ϕαβp1
ϕαβp2

ϕαβp3
, I

(3)
3 (ϕ) =

∑
αβγ

ϕαβp1
ϕαβp2

ϕαγp3
,

1I
(k)
j are deemed RS invariant because they are unaffected by the global transformation

ϕ′αβ
p = ϕ

PαPβ
p , where P is any permutation of the n replicas.



July 11, 2022 14:0 ws-book9x6 Book Title output page 12

12 Book Title

and

I
(4)
1 =

∑
αβγδ

ϕαβp1
ϕβγp2

ϕγδp3
ϕδαp4

, I
(4)
2 =

∑
αβ

ϕαβp1
ϕαβp2

ϕαβp3
ϕαβp4

, I
(4)
5 =

∑
αβγ

ϕαβp1
ϕαβp2

ϕαγp3
ϕβγp4

.

The stationary condition, which requires the linear term in the interaction

part to vanish, gives that masses and couplings depend on temperature T ,

magnetic field H and replica number n, thus providing an effective field

theory beyond the close vicinity of the zero-field multicritical point. One

can therefore also study the T → 0 regime. Exact relations further relate

some couplings, the most important being w3 = −3w2 = −2w5.

A hierarchy of the masses and couplings emerges close to Tmf
c . For the

paramagnet, m1, w1, u1, u2, and u3 are the only nonzero bare parameters

(up to quartic order). In the crossover region, the Lagrangian can be written

as L = Lpara + δL with δL having additionally the parameters m2, w2, w3,

w5, u5 etc., all of which are proportional to the reduced temperature τ =

(Tmf
c −T )/Tmf

c . It is clear that the above representation of the system by the

RS invariants with unrestricted replica summations and couplings belonging

to them is well suited to the system close to the zero-field multicritical point

where the paramagnet becomes unstable.

Close to T = 0, however, a new system of couplings must be chosen.

We then decompose the fluctuating field as

ϕαβp = (ϕRp )
αβ + (ϕAp )

αβ + (ϕLp)
αβ

where

• the replicon (R) field has the property
∑

β(ϕ
R
p )

αβ = 0 for any α, so the

number of independent components is n(n− 3)/2;

• the anomalous (A) field can be built up from n − 1 one-replica fields

(ϕAp )
α with the property

∑
α(ϕ

A
p )

α = 0 as (ϕAp )
αβ = 1

2

[
(ϕAp )

α + (ϕAp )
β
]
,

α ̸= β;

• the single component longitudinal (L) field is constant: (ϕLp)
αβ = (ϕLp),

α ̸= β.

L(G) is diagonal in this new representation, whereas the cubic part of L(I)
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takes the form

− 1

3!
√
N

∑′

p1p2p3

{
g1·

∑
αβγ

(ϕRp1
)αβ(ϕRp2

)βγ(ϕRp3
)γα+

1

2
g2·

∑
αβ

(ϕRp1
)αβ(ϕRp2

)αβ(ϕRp3
)αβ

+3g3·
∑
αβ

(ϕRp1
)αβ(ϕRp2

)αβ(ϕAp3
)α+3g4·

∑
αβ

(ϕRp1
)αβ(ϕRp2

)αβ(ϕLp3
)+3g5·

∑
αβ

(ϕRp1
)αβ(ϕAp2

)α(ϕAp3
)β

+g6·
∑
α

(ϕAp1
)α(ϕAp2

)α(ϕAp3
)α+3g7·

∑
α

(ϕAp1
)α(ϕAp2

)α(ϕLp3
)+g8·(ϕLp1

)(ϕLp2
)(ϕLp3

)

}
.

(4.18)

See [34] for the relation between the two sets of couplings, the gi’s and the

wi’s.

To calculate corrections to MF theory near T = 0, we must know

how the bare parameters behave in its vicinity along the MF (or tree-

approximation) AT line. It is then convenient to study the n = 0 and

n ≳ 0 cases separately (see Fig. 4.3).

• n = 0: The two fully-replicon cubic vertices (i.e. with all the three legs

being R) diverge as

g1 = g2 ∼ T−1 , (4.19)

whereas the others vanish like ∼ T lnT . Surprisingly, the longitudinal

mass mL = mA does not become infinitely large in this limit, instead

limT→0mL = O(1). Interestingly, it is not monotonic along the AT line,

but has a maximum at some intermediate temperature.

• n ≳ 0: In the low temperature regime, where the n ≳ 0 line deviates from

the n = 0 one, the two replicon vertices behave again as in Eq. (4.19).

The other six vertices behave at most as gi ∼ T−1 · n2. The AT line,

however, reaches the temperature axis (H = 0) at Tmin ∼ n [ln(n−2)]−1/2,

and the n→ 0 limit finally makes these vertices vanish.

4.2.2 Perturbative correction to the mean field AT line

Because perturbative considerations are somewhat modified at d = 6, our

study in this subsection is restricted to d > 6.

(i) The high-temperature endpoint of the AT line for H = 0:

When both the replica number n and the magnetic field H are zero,

the replicon mass is negative, mR = − 4
3 τ

2, thus yielding an ill-defined
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replicon propagator. We must therefore resort to regularization by n or

H:

• n ≳ 0 and H = 0. The RS phase is stable between τc and τAT, and

it can also be proved that τc is at the same time the temperature

(at one-loop level) where the paramagnet becomes unstable and the

RS order parameter changes sign from negative to positive value.

As for τAT, applying conventional perturbative method with 1/z ≪
n≪ 0 at one-loop order and contemplating the higher order correc-

tions suggests the form

τAT = n · f1(1/nz) + n2 · f2(1/nz) + . . . ,

and by fixing z while n → 0, the high-argument limit of the f

functions will yield the 1/z expansion of τAT(H = 0).

• n = 0 and H2/(kTmf
c )2 ≳ 0. In this case, one can compute the AT

temperature for a given, small magnetic field perturbatively:

τAT = τ0 +O(1/z) , with τ0 ≡
[
3

4

H2

(kTmf
c )2

]1/3
.

The loop expansion is generated for a given, albeit small, magnetic

field with 1/z ≪ τ0 ≪ 1. One can expect that a resummation of

the whole series provides

τAT = τ0 · f̄(1/τ0z) + correction terms ,

and a nontrivial zero-field limit follows if limu→∞ f̄(u) ∼ u, resulting
in

τAT(H = 0) ∼ 1

z
,

in agreement with the previous regularization scheme.

(ii) The zero-temperature limit of the AT line for n = 0:

Close to T = 0 the loop-expansion is valid for 1/z ≪ (T/Tmf
c )2 ≪ 1,

providing the result

H2
AT

(kTmf
c )2

= ln z+ln

(
8

9π
u

)
+O(u) ≡ ln z+g(u) with u =

1

z

(
Tmf
c

T

)2

.

The T = 0 critical field is expected to be finite for a system with fi-

nite connectivity z, in contrast to the SK model. This means that

limu→∞ g(u) must be finite, providing

H2
AT(T = 0) = (kTmf

c )2 · [ln z + g(∞)] .
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4.2.3 Perturbative RG for the cubic field theory

MF theory and its perturbative corrections provide insight into the transi-

tion to the RSB phase. The renormalization group (RG) can also usually

provide the correct phase diagrams and universal critical parameters for

finite d, short-range systems (z finite). As discussed in Sec. 4.1, the H = 0

case was initially studied by Wilson’s RG, which identified a stable fixed

point in the first order of the ϵ-expansion, ϵ = 6 − d [36, 37]. Later works

extended the calculation of the critical exponents η and ν up to third or-

der [38]. An attempt of the RG study for the RS spin glass phase (again

for H = 0), with the result of finding its instability, was also done in [39].

Except in this last work, a single mass m1 and cubic coupling w1 were

considered (see Eqs. (4.16) and (4.17)), and it is the replicated paramagnet

which becomes unstable on the critical surface belonging to this stable fixed

point. This single critical mass is actually a direct consequence of the extra

symmetry the replicated paramagnet has over the generic RS phase [35],

thus resulting in the degeneracy of three different masses of the RS phase:

replicon, anomalous and longitudinal [32,39].

The true spin glass transition, i.e. the AT transition, has a single critical

mass, namely the replicon one mR, and only the two fully replicon cubic

couplings g1 and g2 are different from zero (see Eq. (4.18)). The first-

order RG for this three-parameter model was worked out by Bray and

Roberts [33] who found no stable fixed point when d < 6. As for the case

above d = 6, the stable Gaussian fixed point has, somewhat unusually,

a finite basin of attraction that vanishes as d → 6+ [40]. Although not

specifically examined, this finite basin of attraction may exist in any high

d, and physical systems outside of it may then not be attracted by the

Gaussian fixed point.

These two parts of the parameter space—the replicated paramagnet

and the fully replicon subspace—are closed under the RG iteration, and

are both special cases of a more general RG system with three masses and

eight cubic couplings (see Eqs. (4.16), (4.17) and (4.18)). The first-order

RG equations in this large parameter space were presented for generic n

and for n = 0 in Ref. [41]. The most important conclusion from this many-

parameter RG is that there is a critical AT surface in the crossover region

around the zero-field fixed point over a range of dimensions d ≲ 6, d = 6,

and d ≳ 6 [42, 43]. 2 The existence of the critical AT surface around the

2Note that all these contributions consider a pure cubic model, which is related to but
not equal with the effective field theory proposed here.
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H = 0 fixed point does not contradict the lack of a stable AT-like fixed

point: runaway trajectories for g1 and g2 are expected as the RG iterations

push the system toward zero temperature.

4.2.4 An unfinished story: transition to the RSB phase

Stable, strong coupling fixed points Various lines of evidence sup-

port the existence of an AT-like transition in short range systems over a

wide d range. Examples include the numerical work in d = 4 [44], Wilson’s

perturbative RG around the zero-field fixed point (Sec. 4.2.3), and pertur-

bative corrections to MF theory (Sec. 4.2.2). Nevertheless, a theoretical

understanding of the AT critical state is still lacking. The failure to find a

stable nontrivial fixed point for d < 6 in the one-loop perturbative RG [33]

and the runaway RG trajectories may be explained by a possible strong

coupling fixed point (which is undetectable at one-loop level). Evidence for

such a fixed point (stable over a range of d) has been found at two-loop level

in Ref. [45], supplemented by a three-loop calculation and a resummation

procedure [46], but the situation remains inconclusive (see Sec. 4.3).

Initial conditions for the RG iteration in d > 6 For d > 6 the

Gaussian fixed point is stable, but its basin of attraction is finite [40]. This

assessment refers to the fully replicon subspace, which is closed under the

RG flow. Physical systems, however, when they are considered as initial

conditions for an RG flow, usually lie outside of this subspace. It is therefore

nontrivial to predict the outcome of an RG iteration. In Fig. 4.4 the AT

line of the effective field theory, introduced in Sec. 4.2.1, is shown for some

d > 6 and 1/z ≪ 1; the perturbative study in Sec. 4.2.2 is applied here.

Three initial conditions on the AT line (where the exact replicon mass ΓR

is zero) are considered:

• State A: H = 0 endpoint of the AT line, which does not necessarily

coincide with the critical point of the replicated paramagnet (see Sec.

4.2.2). This state (and those with H ≳ 0) is far from the fully replicon

subspace, because we have (by only showing the leading terms):

g1 = 1 , g3 = −1 , g5 = −1 , g6 = 2 , ḡ7 = −3

2
, ḡ8 =

1

4
,

g2 ∼
1

z
, ḡ4 ∼

1

z
, mR ∼ −

1

z2
, mL ∼

1

z
;

see Ref. [41] for the definitions of the bared couplings which must be

used when n = 0. Since gi/
√
z ≪ 1 for all i, this state lies inside the
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C

Fig. 4.4 Phase diagram of the effective field theory in the H − T plane. Three states

on the AT line are considered as initial conditions for the RG iteration (see text for

details). The encircled region is the nonperturbative part of the RS-to-RSB transition.
For comparison, the MF (tree-level) AT line is also displayed (narrow line).

perturbative region. From state A, RG iterations move the system toward

the fully replicon subspace, driven by the hardening longitudinal mass

(mL → ∞). Decoupling of the RG equations for g1 and g2 occurs when

mL = ∞. Although Ref. [47] supposed that the RG flow ends at the

Gaussian fixed point g1 = g2 = 0 when d ≳ 6, it is difficult to see this,

and a runaway flow to infinity is also conceivable.

• State B: The low-temperature end of the perturbative AT line where

1
z ≪

(
T

Tmf
c

)2

≪ 1. To lighten the notation, let us define η ≡
(

T
Tmf
c

)2

≪ 1.

We have for the couplings:

g1 = g2 =
4

5
η−1/2 ≫ 1 whereas g3, ḡ4, g5, g6, ḡ7, ḡ8 ∼ η1/2 ln η ≪ 1.

Because gi/
√
z ≪ 1 even for i = 1, 2, this initial state is still inside the

perturbative regime. As for the masses, mL = O(1) and mR ∼ −1/ηz ≪
1. Although this state is obviously dominated by the replicon mode, it

is still somewhat outside the fully replicon subspace.

• State C: The encircled region in Fig. 4.4 shows the nonperturbative part

of the AT line where 1/ηz = O(1) (see Sec. 4.2.2). As for the replicon

couplings, g1/
√
z = g2/

√
z are also of order unity and we are out of

the range where the perturbative RG is applicable. State C is the zero-

temperature limit of the AT line where 1/ηz → ∞. Considering these
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infinitely large replicon couplings at T = 0, one can certainly conclude

that, notwithstanding the correct phase diagram with the finite critical

field at T = 0, the zero-temperature spin glass is not faithfully repre-

sented by the effective field theory put forward here. One can speculate

that regularization with the replica number n ≳ 0 may remedy the prob-

lem. Alternatively, the loop expansion around the Bethe lattice (instead

of the fully connected limit) at T = 0 may provide a solution to the

problem [48].

4.3 Real-Space RG for spin glasses

Maria Chiara Angelini, Dipartimento di Fisica, Sapienza Università di

Roma, Rome, Italy

As discussed in Sec. 4.2, the standard perturbative RG computation

at one loop finds no suitable fixed point (FP) for d < 6 to describe the

low-T phase [49, 50]. Although the second-order perturbative expansion

finds a strong-coupling FP [46,51], this FP is nonperturbative, as it cannot

be reached continuously from the Gaussian one from du = 6. Given that

the perturbative analysis is uncontrolled in the strong-coupling regime, the

existence and relevance of this FP cannot be confirmed using the approach

of Ref. [51]. Real-space RG then seem like a natural methodological choice,

because the approach is non-perturbative by construction. In this section

we o review the real-space RG methods that have been applied to SG,

highlighting both their strengths and weaknesses.

4.3.1 Migdal-Kadanoff RG

Real-space RG can be viewed as a decimation procedure that reduces a

larger system to a smaller one, so as to preserve–or scale appropriately–

important physical observables. The partition function is then evaluated

iteratively. For each iteration, a block of spins {σ}, described by the Hamil-

tonian H({σ}) with couplings {J}, is replaced by an equivalent system with

fewer spins {σ′} and Hamiltonian H ′({σ′}), with renormalized couplings

{J ′}, such that the partition function of the original and the renormalized

systems are the same. The study of the resulting transformation of the

system couplings can then identify critical points and critical exponents.

While this procedure can be carried out explicitly in d = 1 because the

Hamiltonian remains of the same form after the reduction of the degrees

of freedom, for d > 1 new coupling terms arise between distant spins,
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(a)

b
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(b)

Fig. 4.5 (a) Basic step of the MK bond moving procedure to renormalize a d = 2

hypercubic lattice. (b) Basic step of the iterative procedure to generate a HL, for which
MK RG is exact.

and the block-spin renormalization cannot be carried out exactly. The

Migdal-Kadanoff (MK) approximation aims to overcome the proliferation

of couplings [52,53]. Once the spins in the lattice are divided into blocks, all

the couplings internal to the blocks are moved to the spins at the edges of

the blocks (see Fig. 4.5(a)). An exact decimation of the spins at the edges,

except those on the corners, is then performed. One can demonstrate that

the free energy of the system after the bond-moving procedure is a lower

bound to the free energy of the original one. The MK procedure applied to a

d-dimensional hypercubic lattice consists of replacing it with a hierarchical

diamond lattice (HL), for which the MK RG is exact [54]. HL are generated

iteratively. The procedure starts at step G = 0 with two spins connected

by a single link. At each step G, for each link of step G − 1, p parallel

branches, made of s bonds in series each, are added, creating p · (s−1) new

spins. The first step is shown in Fig. 4.5(b). The relationship between the

hypercubic lattice and the associated HL is then d = 1 + ln(b)/ ln(s). The

RG procedure is the exact opposite of the iterative procedure to construct

the HL. For instance, in step 1, the p · (s − 1) spins generated at the

last level are integrated out, generating new effective couplings and fields

between the remaining spins 3. Particular care should be taken when fields

are involved [55].

Despite its simplicity, the MK RG can capture highly nontrivial physical

features. For example, it accurately describes the T = 0 FP of the random

field Ising model [56]. However, it becomes less quantitatively accurate as

d increases and sometimes even fails qualitatively [57].

3In the following we take s = 2, which is considered in all the works considered.
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Fig. 4.6 MK RG flow in the plane ( T
vj

− vh
vj

) for d > 8. Adapted from Ref. [58].

The phase diagram for SG with H = 0 obtained through MK RG is

depicted in Ref. [59]. The model here displays a phase transition from P

to SG at Tc(p). Starting at T > Tc, the renormalized variance of the cou-

pling distribution vJ decreases, flowing towards the P fixed point T
vj

=∞.

Starting at T < Tc, the renormalized variance of the coupling distribution

increases towards a T = 0 FP associated with the SG phase T
vj

= 0. At

the SG FP, the renormalized variance of the couplings after n iterations

grows as v
(n)
J ∝ (2n)θ. Remarkably, the dependence of θ on the effective

dimension is well described by θ(d) = (d− 2.5)/2, which is consistent with

the lower critical dimension dL = 2.5 determined numerically and theoret-

ically [60–62].

In the SG phase, single RG trajectories are chaotic [63], and so is the

renormalized couplings dependence on temperature [64]. One way out of

this difficulty is to consider the contribution of random fields. Suppose

that the original fields are extracted from a Gaussian distribution of zero

mean and variance vh. One can show that, for any dimension (any p), the

zero temperature SG FP T
vj

= 0 becomes unstable, the external field thus

corresponding to a relevant perturbation. For small enough d there is no

other stable FP associated to the SG phase with field [55]. The transi-

tion seems to be destroyed by the field. However, the situation changes as

d increases. The renormalization flow projected on the plane ( T
vj
, vh

vj
) for

d > 8 is shown in Fig. 4.6 [58]. Even though the SG-FP is unstable also

in the presence of an external field, the system then flows toward a new

zero-temperature stable fixed point, SGH, which rules the behavior of the

SG phase in a field. At high T and/or for strong fields the system flows

to the P FP ( T
vj
, vhvj ) = (∞,∞). Therefore, there is necessarily an unstable
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FP, SGHc, separating the P and the SGH ones. The situation persists at

T = 0 and governs the SG transition in a field. The fact that the critical

FP point is a T = 0 one implies that there is a third independent critical

exponent, in addition to the usual two associated with finite-T FPs. Again,

one can compute the new exponent θc by looking at how the variance of the

couplings increases at the SGHc FP. The other consequences of a T = 0 FP

is that, while correlation functions associated to thermal fluctuations de-

cay as Gthermal(r) ∝ 1
rd−2+η , correlation functions associated to disordered

fluctuations decay as Gdisorder(r) ∝ 1
rd−2+η−θc

[65]. The MK RG picture

is therefore profoundly different from the standard MF description, which

predicts a Gaussian FP in d > du that is not a T = 0 one (see Sec. 4.1

and 4.2). For d→∞, however, the transition found through MK RG loses

its T = 0 character because θc → 0. MK RG predicts a lower critical di-

mension dL = 8, below which a stable FP cannot be found when the field

is present. The same MK RG method has also been applied to models of

glasses for which the microscopic degrees of freedom can take q values. Al-

though the ensuing RG flow is similar to that in Fig. 4.6, the presence of a

critical line ending on a T = 0 critical FP, and the low-temperature phase

governed by another T = 0 FP, the lower critical dimension then decreases

with increasing q, e.g., dL(q = 2) = 8 but dL(q =∞) ≃ 4 [66,67].

The curse of MK RG is that it assumes from the outset that the system

is replica symmetric. As was shown by Gardner [68], it cannot include RSB,

thus reducing the operative space to a finite, discrete space. To understand

if the finite-dimensional world exhibits RSB, then RG methods are needed.

4.3.2 Ensemble RG

At each iteration, MK RG maps a single sample of size N to a smaller

one. Given an ensemble of systems of size N , a transformation is applied

to each of them to obtain an ensemble of smaller systems. However, a

different approach is to establish a direct mapping between the entire prob-

ability distributions of couplings in larger and smaller systems, such that

the average over such distributions of important observables remains the

same. Obviously, in models for which the RG transformation is exact, the

two approaches should provide the same answer, but when approximations

are made, the latter could lead to better results. In particular, models with

strong disorder (such as SGs), sample-to-sample fluctuations may dominate

thermal ones. Following the latter approach, in Ref. [69] the Ensemble RG

(ERG), was formulated.
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In principle, ERG can be applied to any disordered system. However,

it has so far only been applied to the hierarchical model (HM), which is a

specific d = 1 long-range model, whose Hamiltonian for N = 2n spins can

be constructed iteratively as follows:

Hn+1(s1, ..., s2n+1) = Hn(s1, ..., s2n) +Hn(s2n+1, ..., s2n+1) + cn+1
2n+1∑
i<j=1

Jijsisj + cost

In practice, Hn is the sum of interactions at n different levels. HM was

introduced by Dyson in its ferromagnetic version [70,71], and its SG version

was proposed in Ref. [72]. By properly tuning the factor c that controls

how fast the coupling intensity decays with distance, HM can emulate a

d-dimensional short-ranged (SR) model: c ≃ 2−1−2/d for the ferromagnetic

model, c ≃ 2(−1−2/d)/2 for the SG version (see also Ref. [73, 74]). Because

decimation of HM by a standard block-spin transformation does not give

rise to any multispin terms (unlike for finite-d lattices), considering pairwise

interactions alone in the RG is not an approximation.

ERG assumes that couplings remain independent. They can never-

theless have a different probability distribution Pk(J) at each level k ∈
{1, 2, ..., n}. Each coupling distribution is then parameterized by K num-

bers, otherwise the RG becomes untractable. For SG with a field, one

can assume the distribution of couplings and fields to be two independent

Gaussians, thus giving K = 2 parameters that are their associated vari-

ances. ERG for an ensemble of systems with n levels works as follows:

(1) Compute (n − 1)K observables < Oj >, j ∈ {K + 1, ...,Kn} in the

larger systems extracted from the original coupling distribution.

(2) Determine the new (n − 1)K parameters of the P ′ distributions by

requiring that < O′
i >P ′=< Oi+K >P for any i ∈ 1, 2, ..., (n− 1)K.

(3) Build a new ensemble of systems of the original size by joining

them with random couplings extracted from the original distribu-

tion Pn(J) two smaller systems with couplings extracted from P ′
k(J

′),

k ∈ {1, 2, ..., (n− 1)} found at step (2).

Primed quantities refer to the smaller systems. The first two steps are the

true renormalization steps, while the last step is required to obtain a final

system size that allows for iterating the method until convergence. The

observables used to fix the variances in the SG ERG are normalized SG

correlations at different levels. The ERG analysis of SG with H = 0 found

a SG transition below a critical temperature for (effective) d ≃ 3 [69]. The

method, which has been assessed by comparing with simulation results,
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reproduces the proper scaling of the ν exponent, which, for long-range sys-

tems, shows a minimum at the upper critical value of c. ERG therefore

correctly identifies du. The ERG analysis for SG in a field obtained results

are in perfect agreement with what was found by MK RG [58]. The quali-

tative phase diagram is as in Fig. 4.6, and below dL ≃ 8 ERG is unable to

identify a SG phase.

4.3.3 Strong disorder RG

The Strong Disorder RG (SDRG) is a T = 0 scheme to construct an ap-

proximate SG ground state [75]. It considers the local field of each spin Si

hloci =
∑

j JijSj . Once its largest coupling (in absolute value) is computed,

corresponding to some index jmax(i), maxj(|Jij |) ≡ |Ji,jmax(i)|, one would

like to identify the spins for which the local field

hloci = Ji,jmax(i)Sjmax(i) +
∑

j ̸=jmax(i)

JijSj

is dominated by the first term. The second term could be approximated

by a sum of random terms of absolute values Jij and of random signs. It

is therefore reasonable to use

Ωi ≡ |Ji,jmax(i)| −
√ ∑

j ̸=jmax(i)

|Jij |2

as an indicator of the relative dominance of the maximal coupling in the

local field. SDRG is based on the variable Ωi defined by the following

elementary decimation scheme

(1) For each spin i, compute the associated variable Ωi;

(2) Find the spin i0 with the maximal Ωi;

(3) Eliminate the spin Si0 , fixing it to

Si0 = Sjmax(i0)sgn(Ji0jmax(i0));

(4) Transfer all its couplings Ji0,j with j ̸= jmax(i0) to the spin Sjmax(i0)

via the renormalization rule;

JR
jmax(i0),j

= Jjmax(i0),j + Ji0,jsgn(Ji0jmax(i0)). (4.20)

The procedure is repeated N − 1 times; leaving a single spin Slast at

the end, with Slast = ±1 labeling the two ground states related by a global

flip of all the spins. From Slast = +1, one may reconstruct all the values

of the decimated spins via the rule in Eq. (4.20), and thus approximate the

energy of the ground state.
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SDRG has been used to assess the validity of the Droplet Picture (DP)

or Replica Symmetry Breaking (RSB) description of SG models, depending

on d. In the DP, a RS low-T phase with properties determined by the

excitation of droplets of fractal dimension ds < d with a free-energy cost

that grows as Lθ for a length scale L. In the RSB picture, there exist

system-size excitations which have a free-energy cost of O(1) and which are

space-filling, i.e., have ds = d. Thus, by investigating the value of ds of

interfaces in the low-T phase, it is possible to determine whether RSB or

DP best describes the physics.

In SDRG, θ and ds are obtained by considering–for each disordered

sample—the two ground states associated with two different boundary con-

ditions. Periodic (P) and Anti-Periodic (AP) conditions, in particular are

obtained by flipping the sign of the bonds crossing a hyperplane of the lat-

tice. The difference between the two ground states defines a system-size

domain wall. The scaling of its energy gives θ, and the scaling of its surface

gives ds.

SDRG values for θ and ds were first obtained for d = 2 and 3 [75]. While

the values of ds by SDRG are in good agreement with those obtained by

numerical methods both in d = 2 [76] and in d = 3 [77], θ is not well

captured, giving θ(d = 2) ≃ 0. The scheme thus appears to give the

opposite of MKRG, which correctly predicts θ, but misses the value of ds
which is fixed to the trivial dMK

s = d − 1. The SDRG value of ds up to

d = 6, were later obtained using a greedy algorithm [78]. The two estimates

appear to merge and give ds = d in d = 6, thus suggesting that RSB could

be valid above d = 6, while DP could describe the model for d < 6.

The key problem of SDRG is that while the approach appears to be

accurate for the early iterations, where there exist spins with positive (and

large) Ωi, all Ωi eventually turn negative, a sign of a failure. As suggested

by Monthus [75], it could be that the fractal dimension ds is dominated by

the early iterations, which correspond to long length scales, and for this

reason, the SDGR then correctly captures its value.

4.3.4 M-Layer expansion around the Bethe lattice solution

We finish with a recently developed expansion around a different soluble MF

model: the Bethe lattice (BL) (or, equivalently, a random regular graph of

finite connectivity z). A BL model is essentially MF because of the (local)

tree structure of the lattice; the contribution of finite-length loops van-

ishes in the thermodynamic limit. The probability distribution of a spin
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is therefore independent of the probability of a nearest neighboring spin if

the direct edge between them is cut. The idea of an expansion around the

BL was originally introduced by Efetov [79] and revived by different au-

thors [80,81]. Reference [82] formalized the approach through the M -layer

construction: one introduces M copies of the original finite-dimensional

lattice and generates a new lattice through a local random rewiring of the

links. In the M → ∞ limit, the M -layer lattice is locally BL-like in that

is presents a tree-like local structure without loops of finite length. (For

M = 1, one recovers the original lattice.) Using the small parameter 1/M ,

one can perform an expansion for a generic multi-point observable. The

critical series is expressed as a sum of topological Feynman diagrams with

the same numerical pre-factors as in field theories. The only difference is

that the contribution of a given diagram must not be evaluated by asso-

ciating bare propagators to its lines, as is usual; instead, one computes

the observable on the corresponding topological loop diagram, thought as

manually inserted in a BL. To leading order, one recovers the BL solution

with no spatial loops, but upon lowering d spatial loops grow more impor-

tant. They are therefore present at higher orders in the BL expansion. The

perturbative nature of the BL expansion is particularly helpful in keeping

computations under control. In addition, it permits following the well-

threaded path of standard perturbative RG. BLRG, however, also includes

non-perturbative features compared to the standard expansion. The BL

solution is exact in one dimension, thus including the resummation of all

the non-perturbative effects. Finite connectivity is already encoded at the

0th order of the expansion, and, consequently also accounts for important

properties, such as local fluctuation of observables and heterogeneity, at

variance with the expansion around the fully-connected (FC) MF solution

where such effects are construed as non-perturbative effects. The M -layer

expansion around BL for a SG in a field in the limit of large connectivity

z →∞ (for T > 0) [83] recovers the standard expansion results [49,50].

In previous sections, we have seen that non-perturbative RG schemes,

such as MKRG and ERG, find a critical zero-temperature fixed point for

the SG with field, for high enough d. In the FC model, the transition line

in the temperature-field (T − H) plane diverges at T = 0. There are no

zero-temperature fixed points around which one could expand. By contrast,

the BL presents such a transition at a finite field hc [84], around which one

can perform an expansion using the M -layer formalism. While setting the

temperature straight to 0 is impossible in the Lagrangian approach of the

FC expansion, T = 0 computations can be easily performed in the context
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of the BL expansion [85]. The zero-loop two-point correlation functions

and the first one-loop corrections at T = 0 and finite z [86] have found

loop corrections not to be negligible for d < dBL
u = 8. The upper critical

dimension predicted by the BL expansion is therefore different from du = 6

predicted by standard field theory. Given that the large z results with

the standard expansion finite connectivity is understood to be a crucial

ingredient. In other words, the limits z →∞ and T → 0 do not commute.

The natural next step is to compute three-point correlation functions

associated with the cubic vertex at zero- and one-loop order for the BL

expansion, to see if, by standard RG field theoretical methods, one can

find a non-trivial FP of the RG equations, for d < dBL
u . This program is

currently underway.

Acknowledgments

T.L.: I am eternally grateful to have had Brooks Harris as a colleague,

collaborator, and part-time mentor during the 1970s and 1980s. I am also

grateful for early support from the Office of Naval Research (ONR) and for

continuous support of the National Science Foundation. T.T. acknowledges

financial support from the Hungarian Science Found (OTKA), No. K125171

References

[1] A. B. Harris, T. C. Lubensky and J. H. Chen, Critical properties
of spin-glasses, Physical Review Letters 36, pp. 415–418 (1976), doi:
10.1103/PhysRevLett.36.415.

[2] K. G. Wilson, Renormalization group and critical phenomena .1. renormal-
ization group and kadanoff scaling picture, Physical Review B 4, 9, p. 3174
(1971a), doi:10.1103/PhysRevB.4.3174.

[3] K. G. Wilson, Renormalization group and critical phenomena .2. phase-space
cell analysis of critical behavior, Physical Review B 4, p. 3184 (1971b), doi:
I10.1103/PhysRevB.4.3184.

[4] K. G. Wilson and J. Kogut, The renormalization group and the epsilon
exansion, Physics Reports 12C, p. 75 (1974).

[5] A. J. Bray and M. A. Moore, Replica symmetry and massless modes in the
ising spin glass, Journal of Physics C-Solid State Physics 12, 1, pp. 79–104
(1979), doi:10.1088/0022-3719/12/1/020.

[6] T. Temesvari, C. De Dominicis and I. R. Pimentel, Generic replica symmetric
field-theory for short range ising spin glasses, European Physical Journal B
25, 3, pp. 361–372 (2002), doi:10.1140/epjb/e20020041.

[7] J. H. Chen and T. C. Lubensky, Mean field and epsilon-expansion



July 11, 2022 14:0 ws-book9x6 Book Title output page 27

Bibliography 27

study of spin-glasses, Physical Review B 16, pp. 2106–2114 (1977), doi:
10.1103/PhysRevB.16.2106.

[8] P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics. Cam-
bridge University Press (2000).

[9] N. Goldenfeld, Lectures Phase Transitions and the Renormalization Group
(Frontiers of Physics). Addison-Wesley (1972).

[10] J. A. Hertz, Quantum critical phenomena, Physical Review B 14, pp. 1165–
1184 (1976), doi:10.1103/PhysRevB.14.1165.

[11] S. Sachdev, Quantum Phase Transitions, 2nd edn. Cambridge University
Press (2011).

[12] P. de Gennes, Scaling concepts in Polymer Physics. Cornell University Press
(1979).

[13] P. W. Kasteleyn and F. C.M., Phase transitions in lattice systems with
random local properties, J. Phys. Soc. Jpn Suppl. 26 (1969).

[14] A. B. Harris, T. C. Lubensky, W. K. Holcomb and C. Dasgupta,
Renormalizion-group approach to percolation problems, Physical Review
Letters 35, 6, pp. 327–330 (1975), doi:10.1103/PhysRevLett.35.327.

[15] T. C. Lubensky and J. Isaacson, Field-theory for statistics of branched poly-
mers, gelation, and vulcanization, Physical Review Letters 41, 12, pp. 829–
832 (1978), doi:10.1103/PhysRevLett.41.829.

[16] T. C. Lubensky and J. Isaacson, Statistics of lattice animals and dilute
branched polymers, Physical Review A 20, 5, pp. 2130–2146 (1979), doi:
10.1103/PhysRevA.20.2130.

[17] M. Mezard, G. Parisi and M. A. Virasoro, Spin Glasses and Beyond. World
Scientific 1987 (1987).

[18] J. R. L. de Almeida and D. J. Thouless, Stability of sherrington-kirkpatrick
solution of a spin glass model, Journal of Physics a-Mathematical and Gen-
eral 11, pp. 983–990 (1978), doi:10.1088/0305-4470/11/5/028.

[19] J. R. L. de Almeida, R. C. Jones, J. M. Kosterlitz and D. J. Thou-
less, Infinite-ranged spin glass with m-component spins, Journal of
Physics C-Solid State Physics 11, pp. L871–L875 (1978), doi:10.1088/0022-
3719/11/21/005.

[20] S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal
of Physics F-Metal Physics 5, pp. 965–974 (1975), doi:10.1088/0305-
4608/5/5/017.

[21] S. F. Edwards and P. W. Anderson, Theory of spin-glasses .2, Journal
of Physics F-Metal Physics 6, pp. 1927–1937 (1976), doi:10.1088/0305-
4608/6/10/022.

[22] V. J. Emery, Critical properties of many-component systems, Physical Re-
view B 11, pp. 239–247 (1975), doi:10.1103/PhysRevB.11.239.

[23] G. Grinstein and A. Luther, Application of renormalization group to phase-
transitions in disordered systems, Physical Review B 13, pp. 1329–1343
(1976), doi:10.1103/PhysRevB.13.1329.

[24] D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Physical
Review Letters 35, pp. 1792–1796 (1975), doi:10.1103/PhysRevLett.35.1792.

[25] S. Kirkpatrick and D. Sherrington, Infinite-ranged models of spin-glasses,



July 11, 2022 14:0 ws-book9x6 Book Title output page 28

28 Book Title

Physical Review B 17, pp. 4384–4403 (1978),
doi:10.1103/PhysRevB.17.4384.

[26] A. J. Bray and M. A. Moore, Replica-symmetry breaking in spin-
glass theories, Physical Review Letters 41, pp. 1068–1072 (1978), doi:
10.1103/PhysRevLett.41.1068.

[27] A. J. Bray and M. A. Moore, Replica symmetry and massless modes in spin-
glasses - 2 non-ising spins, Journal of Physics C-Solid State Physics 12, pp.
1349–1361 (1979), doi:10.1088/0022-3719/12/7/023.

[28] S. Fishman and A. Aharony, Phase-diagrams and multicritical points in
randomly mixed magnets .3. competing spin-glass and magnetic-ordering,
Physical Review B 21, pp. 280–295 (1980), doi:10.1103/PhysRevB.21.280.

[29] D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys.
Rev. Lett. 35, p. 1792 (1975).

[30] J. R. L. de Almeida and D. J. Thouless, Stability of the Sherrington-
Kirkpatrick solution of a spin glass model, J. Phys. A 11, p. 983 (1978).

[31] I. Kondor, Parisi’s mean-field solution for spin glasses as an analytic contin-
uation in the replica number, J. Phys. A 16, p. L127 (1983).

[32] A. J. Bray and M. A. Moore, Replica symmetry and massless modes in the
Ising spin glass, J. Phys. C 12, p. 79 (1979).

[33] A. J. Bray and S. A. Roberts, Renormalisation-group approach to the spin
glass transition in finite magnetic fields, J. Phys. C 13, p. 5405 (1980).
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