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Anthropogenic activities contribute to the rising level 
of greenhouse gas concentrations in the atmosphere 

at a rate of approximately 1% per year providing a time-
dependent external radiative forcing on the climate 
system (Peters et al. 2020). Associated changes in several 
climate variables (e.g., global mean surface temperature) 
are thought to have emerged from unforced natural 
internal processes of the climate system allowed by the 
characteristics of the dissipative chaotic nature of the 
climate dynamics, i.e., from internal variability (Hawkins 
et al. 2020). In addition to tangible consequences of 
anthropogenic forcing affecting the climate system (e.g., 
the dramatic Arctic sea ice retreat (Screen and Simmonds 
2010)), simultaneous, less apparent changes occurring 
on low-frequency timescales demand effort to deal with. 
These include changes in internal variability due to the 
non-stationary anthropogenic forcing, that represents 
additional uncertainty affecting future model projections 
on top of internal variability, scenario and model 
uncertainty (Hawkins and Sutton 2009; Deser et al. 2012; 
Wettstein and Deser 2014; Lehner et al. 2020).

Although previous studies using observations and multi-
model single-member simulations successfully detected, 
for example, changes in the jet-stream variability 
(Barnes and Polvani 2013) or in the variance of Northern 
Hemisphere (NH) temperature (Screen 2014) due to 
anthropogenic forcing, traditional methods based on 
long-term temporal statistics unavoidably make use 
of discrete time windows subjectively chosen from a 
continuously time dependent system (i.e., the changing 
climate). In addition, separating the effects of model 
structural differences and internal variability in multi-
model ensembles is challenging (Merrifield et al. 2019). 
State-of-the-art Single Model Initial-condition Large 
Ensemble (SMILE) simulations (Kay et al. 2015; Maher et 
al. 2019; Deser et al. 2020) – that account for the chaotic 
behavior of the climate system with perturbed initial 
condition runs of the same model – offer a way forward 
for new perspectives on externally-forced changes in 
internal variability. Here, we outline an approach for 
analyzing SMILEs called the snapshot view, which offers 
a mathematically exact and elegant formulation and 
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the potential to complement previous diagnostics with 
ensemble-based statistics.

Theoretical background – The snapshot view

The concept of the so-called “snapshot view” was 
introduced into dynamical system theory to understand 
how nonautonomous dynamics behave when subjected 
to general time dependent forcings. Romeiras et al. (1990) 
drew attention to an interesting feature of dissipative 
dynamical systems: the fact that a single long “noisy” 
trajectory traces out a fuzzy shape, while an ensemble of 
motions starting from many different initial conditions, 
using the same noise realization along each trajectory, 
creates a structured fractal pattern at any instant. This 
ensemble-related pattern, the snapshot chaotic attractor, 
continuously changes its shape, in contrast to traditional 
chaotic attractors, which are time-independent (Lorenz 
1963; Ott 1993). The concept of snapshot attractors has 
been used to understand a variety of time-dependent 
physical phenomena (see e.g., Pikovsky 1984; Yu et 
al. 1990; Serquina et al. 2008; Ku et al. 2015; Vincze et 
al. 2017). However, it was not until Ghil et al. (2008) 
and Checkroun et al. (2011) pointed out its potential 
importance to the field of climate dynamics that it began 
to be more widely applied in climate science and that this 
concept (also called the “pullback attractor”) was relevant 
for the understanding of anthropogenic climate change.

Deterministic (noise-free) snapshot attractors capture 
the essence of an unpredictable dynamical system under 
changing conditions (Bódai and Tél 2012; Pierini 2014; 
Drótos et al. 2015). The traditional way of obtaining a 
chaotic attractor by means of a “single trajectory” is not 
equivalent to the “ensemble” method (ergodicity does 
not hold in systems subjected to forcings of general 
time-dependence). One has to choose between the two 
approaches, and it is the ensemble-based snapshot view 
that is appropriate for a faithful statistical representation 
of the possible distribution of a given quantity at any 
time instant in a changing climate. The reason is that 
the ensemble also represents a natural probability 
distribution, supported by the snapshot attractor.

The basic features of the snapshot view valid for any 
dissipative system subjected to general forcing can be 
summarized as follows (Drótos et al. 2015):

• Conclusions based on single trajectories may be 
misleading since such trajectories are unpredictable, 
thus not representative.

• On the contrary, ensemble properties, including the 
natural probability distributions (which set in after 
the initial conditions are “forgotten” in a numerical 
simulation) are fully predictable in a statistical sense 
(in harmony with general properties of chaotic 
systems (Tél and Gruiz 2006)).

• An instantaneous characterization of the system 
becomes possible (as properly expressed by the 
adjective “snapshot”), and the use of (occasionally 
biased) temporal averages can fully be avoided.

• It offers a straightforward way to analyze internal 
variability in a changing system, e.g., by means 
of statistical quantifiers of the instantaneous 
probability distribution.

• Because the instantaneous (snapshot) statistics are 
available at each time instant, the forced changes in 
any quantity, such as the internal variability, can be 
determined by analyzing the time series of snapshot 
values by means of the traditional tools of time 
series analysis.

In the particular example of climate change, the 
snapshot view can equivalently be formulated as the 
theory of parallel climate realizations (Herein et al. 2017; 
Tél et al. 2019). Qualitatively speaking, one can imagine 
many copies of the Earth system moving on different 
dynamical paths, each being subjected to the same 
physical laws and forcings. As a generalization of Leith’s 
observation (Leith 1978), parallel climate realizations 
constitute an ensemble of a large number of members, 
and the snapshot taken over the ensemble (the 
snapshot attractor) represents the plethora of permitted 
climate states at that instant.
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Utilizing the snapshot view to detect forced changes in 
internal variability

In this section we reveal how the snapshot view allows for 
surprisingly simple practices to detect forced changes in 
internal variability via utilizing SMILE simulations. Here, 
we focus on modes of large-scale internal atmospheric 
circulation variability (so-called “teleconnection 
patterns”), which may change due to anthropogenic 
forcing. The question arises how to characterize changes 
in these modes as a result of climate change, since 
certain characteristics of the linkages between the 
teleconnection patterns and other climate variables, 
for example precipitation or air temperature, may also 
change even within a carefully chosen time window 
(Drótos et al. 2015; Herein et al. 2016; Herein et al. 2017; 
Tél et al. 2019). Therefore, we need to reconsider these 
methodologies when aiming to detect forced changes in 
internal variability.

Our previous research (Haszpra et al. 2020b) exemplified 
a novel means of analyzing changes in modes of 
atmospheric circulation variability when the climate 
system is subjected to time-dependent external forcing, 
via introducing the snapshot empirical orthogonal 
function (SEOF) analysis. Rather than apply empirical 
orthogonal function (EOF) analysis in the traditional 
temporal dimension we compute instantaneous EOFs 
(spatial patterns of variability) and associated principal 
components (PCs, amplitude and polarity of the patterns) 
across the ensemble dimension. In doing so, we can 
monitor the changes in an EOF mode resulting from the 
time-dependent external forcing and account for the 
non-stationarity of internal variability. We note that a 
similar method was also developed in Maher et al. (2018), 
however, that approach combines the variability of the 
monthly data with that of the ensemble.

The instantaneous strength of the linkage between a 
particular SEOF teleconnection pattern and another 
climate variable (e.g., surface temperature, TS) can be 
quantified by means of the snapshot correlation, i.e., the 
instantaneous Pearson correlation coefficient computed 
across the ensemble. In this way, instantaneous 

correlation maps are obtained, thereby allowing one to 
monitor the spatial distribution of the correlation field 
in tandem with its time evolution. Such an approach 
has been insightful for documenting changes in the 
teleconnections of the ENSO (Bódai et al. 2020, Haszpra 
et al. 2020a) and that of the North Atlantic Oscillation 
(Herein et al. 2017). Similar to EOF analysis, maximum 
covariance analysis (MCA, Bretherton et al. 1992) may 
also analogously be extended to its ensemble-based 
twin (snapshot MCA, SMCA) to study forced changes in 
coupled modes of variability (see below).

Results

An illustrative example of SEOF: The Arctic Oscillation

We briefly demonstrate advantages of SEOF analysis in 
monitoring temporal changes in the Arctic Oscillation 
(AO) under RCP8.5 forcing in the CESM Large Ensemble 
(CESM-LE, Kay et al. 2015) for 1950–2099. We define the 
AO as the leading SEOF mode in the winter (December–
January–February, DJF) seasonal mean sea level pressure 
(SLP) anomalies poleward of 20°N and the corresponding 
PC series as the instantaneous (DJF) AO indices (AOI). 
Thus, for each winter season during 1950–2099 we 
obtain a spatial pattern that characterizes the current 
set of potential climate states (spanned by the ensemble 
spread) and explains the largest variability in their SLP 
fields, in addition to a PC series whose length is the 
number of ensemble members (for the AO, this PC is 
termed the AO Index or AOI).

The left panel in Figure 1 illustrates the instantaneous DJF 
mean SLP anomalies regressed onto the leading SEOF 
mode in 2025 in the CESM-LE, which closely resembles 
the observed AO pattern (based on historical reanalysis, 
not shown but see for example Thompson et al. 2000). 
Repeating the SEOF analysis for each year between 
1950–2099, important characteristics of the model’s AO 
are revealed, including temporal changes in amplitude 
at several locations determined from a linear fit to the 
regression values at each grid box (Figure 1 right). For 
clarity, in this panel dots represent geographical locations 



39

U S  C L I V A R  V A R I A T I O N S

US CLIVAR VARIATIONS   •   Summer 2020   •   Vol. 18, No. 2 39

where the linear trend is 
found to be significant at 
the 95% level and crosses 
indicate where, in addition, 
the regression coefficients 
are significant at the 95% 
level in the temporal 
mean. For example, the 
amplitude of the AO in the 
Pacific center-of-action 
shows an increase of about 
0.02  hPa  yr–1, implying 
3  hPa over 150  years, i.e., 
the change is of the same 
magnitude as the typical 
amplitude in 2025 (2.5–
6.5 hPa). On the contrary, in 
the northern part of Europe 
and Asia a slight decrease 
of the AO amplitude can 
be observed. Moreover, 
the choice of the scenario influences the magnitude of 
the changes (see application to the MPI Grand Ensemble 
(MPI-GE) with three forcing scenarios in Haszpra et al. 
2020b).

The AOIs are constructed for each winter season 
during 1950–2099 by projecting the instantaneous 
SLP anomalies of the ensemble members onto the 
given (instantaneous) loading (SEOF) pattern. A rather 
straightforward step is to calculate the snapshot 
correlation coefficient r field between the AOI and the 
surface air temperature (TS) across the ensemble. In the 
left panel of Figure 2, the correlation map is shown for 
2025. Similar to the SLP regression map, the correlation 
map resembles the observed relationship between the 
AO and TS (Wallace and Gutzler 1981). Fitting a linear 
trend at each grid point to the time series of snapshot 
correlation coefficients, significant changes are evident in 
the strength of the teleconnections across the NH. Dots 
and crosses in the right panel of Figure 2 indicate regions 
where the snapshot correlation coefficients undergo 
significant changes over time, and may need to be taken 

into account in future seasonal prediction. These regions 
include, e.g., Alaska, the eastern part of the Pacific Ocean 
and Northern Europe where the negative correlations 
become more pronounced (the correlation coefficient 
decreases by 0.1–0.3 over 150 years), and a substantial 
positive trend can be found in the eastern part of Asia 
where the correlation coefficient increases from about 
0.6 to 0.8 over 150 years.

An illustrative example for SMCA: Atmosphere–sea ice 
coupling under different forcing scenarios

Next, we consider an example from a different season 
and study how the coupling between the summertime 
(June–July–August, JJA) Arctic atmospheric circulation and 
September sea ice variability might depend on future 
anthropogenic forcing (Ding et al. 2019). Concomitant 
patterns of high-pressure anomalies in the Arctic and 
enhanced sea ice melt has been previously shown in 
SMILEs (Topál et al. 2020), but there has been little focus 
on possible nonlinearities in the nature or strength of the 
coupling.

Figure 1. (left) December-January-February (DJF) mean sea level pressure (SLP) anomalies (hPa) 
regressed onto the first SEOF mode (explained variance is indicated in parenthesis) in 2025 based 
on the CESM-LE (RCP8.5 scenario). (right) Linear trend (10-3 hPa yr-1) in the SEOF SLP regression 
coefficients during 1950-2099 based on the CESM-LE under historical and RCP8.5 forcing. Dots 
represent geographical locations where the trend is significant at the 95% level. Crosses indicate 
where, in addition, the regression coefficients are significant at the 95% level in the temporal mean.
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To study the influence of external forcing on the coupling 
between the atmospheric circulation and sea ice, we 
calculate linear trends in all members of each of the 
three RCP scenarios in MPI-GE (Maher et al. 2019) over 
2020–2050 for both JJA 200-hPa geopotential height 
(Z200) and September sea ice concentration (SIC) within 
the Arctic (poleward of 60°N). Second, we remove the 
ensemble mean trend from each member, so the residual 
trends only reflect internal variability of the model over 
the 31 years. We then use SMCA between JJA Z200 and 
September SIC trend fields across all the members in a 
given scenario. The leading ensemble-based SMCA modes 
reflect the dominant coupled patterns of internally-
generated trends in Z200 and SIC. For comparison, we 
also calculate the September sea ice area (SIA) trends in 
each member. We note, that a similar approach, using 
ensemble member trend-based EOFs, has previously 
been presented in Wettstein and Deser (2014) to study 
co-variability of atmospheric circulation and sea ice.

The extent to which the SIA trends resemble the time 
expansion coefficients of SMCA in each member can 
be used to probe the degree of linearity in the coupling 
between Z200 and SIC in a given RCP scenario. In the case 

of the RCP4.5 scenario, nearly half 
of the members in the fast melting 
group (15% of the members with 
strongest sea ice melt) show 
identically strong sea ice melt 
despite the linear decrease in the 
time expansion coefficient series 
of the same members (Figure 
3d). Such a phenomenon is not 
observed under the RCP2.6 and 
8.5 scenarios (Figure 3a,g), which 
suggests that the coupling may 
exhibit stronger non-linearity 
under the RCP4.5 scenario. We 
also show that the spatial patterns 
of Z200 and SIC corresponding 
to the leading ensemble-based 
SMCA mode differs slightly 
between RCP4.5 and the two other 

forcing scenarios, indicating some role for the intensity of 
external forcing, which remains a subject of future work 
(Figure 3b-c, e-f, h-i). Interestingly, the shared fraction of 
co-variance between Z200 and SIC (indicated in the panel 
titles in Figure 3) are also slightly higher for the RCP4.5 
scenario compared to the other two. Regarding the 
physical mechanism behind the observed co-variability 
between atmospheric circulation and sea ice, we argue 
based on previous work (Ding et al. 2017; Baxter et al. 
2019) that an internal atmospheric process manifested as 
a high-pressure driven adiabatic warming (via regulating 
downward longwave radiation) can cause sea ice melt on 
top of the externally forced melting (Figures 3b-c, e-f, h-i). 
A more thorough discussion of this physical mechanism 
and its limited representation in SMILEs can be found in 
Topál et al. (2020).

Outlook

We have applied the mathematically well-established 
“snapshot view” based on dynamical systems theory 
to the analysis of SMILEs and reconsidered traditional 
methodologies to study possible future changes in 
internal variability. A future direction of the research 

Figure 2. (left) Ensemble-based snapshot correlation coefficient field between the Arctic 
Oscillation Index and surface air temperature in 2025 based on the CESM-LE (RCP8.5 scenario). 
(right) Linear trend (10-3 yr-1) in the snapshot correlation coefficient during 1950–2099 based 
on the CESM-LE under historical an RCP8.5 forcing. Dots represent geographical locations 
where the trend is significant at the 95% level. Crosses indicate where, in addition, the 
correlation coefficients are significant at the 95% level in the temporal mean.
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could be comparing SEOF results to observations. One 
might try a comparison using carefully chosen (but 
still subjective) multiple time windows centered to the 
instantaneous SEOF year to construct the relevant 
traditional EOF pattern using a single time series. 
However, this comparison is expected to yield similar 
results only if the external forcing does not change much 
within the chosen time window and, therefore, ergodicity 
approximately holds. Equally, it is to be noted that the 
ongoing climate change is not ergodic (Tél et al. 2019). 
As a consequence, the above-mentioned comparison 

can serve as a measure of the ergodicity as well. A crucial 
message of the snapshot view is that all of the traditional, 
time series-based methods can be reformulated for 
ensembles, which will be of use for the broader climate 
community. In this way, utilizing ensemble-based 
(snapshot) analyses of the available SMILEs, ambiguous 
results arising from subjective choices of traditional 
methods (e.g. length and center of time windows) can be 
avoided, the possible climate states at each time instant 
can be properly characterized, and forced changes in any 
ensemble-based quantity can be determined.

Figure 3. Snapshot maximum covariance analysis (SMCA) between June-July-August Z200 and September sea ice concentration (SIC) trends during 
2020–2050 in the three RCP scenarios (2.6, 4.5 and 8.5) from the MPI-GE. The bar plots on the left represent the normalized member loadings 
(orange bars: left y axis) of the leading SMCA mode and the corresponding members’ September total sea ice area (SIA) trends (blue bars: right y 
axis), arranged in ascending order of the SMCA loadings. The percentages represent the shared fraction of covariance between Z200 and SIC trends 
across each ensemble explained by the leading mode. Maps in the middle and right columns show the Z200 and SIC spatial patterns, respectively, 
of the leading SMCA mode for each scenario.
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